海棠文

第636章
章节错误/点此举报

小贴士:页面上方临时书架会自动保存您本电脑上的阅读记录,无需注册
    对于一个给定的感知器来说,它的权重和阈值也是给定的,代表一种决策策略。因此,我们可以通过调整权重和阈值来改变这个策略。
    关于阈值threshold,这里需要指出的一点是,为了表达更方便,一般用它的相反数来表达:b=threshold,这里的b被称为偏置(bias)。
    这样,前面计算输出的规则就修改为:如果w1x1 + w2x2 + w3x3 +...+ b  0,则输出output=1,否则输出output=0。
    而权重w1=w2=2,则b=3。
    很明显,只有当x1=x2=1的时候,output=0,因为(?2)*1+(?2)*1+3=?1,小于0。而其它输入的情况下,都是output=1。
    所以在实际情况下,这其实是一个“与非门”!
    在计算机科学中,与非门是所有门部件中比较特殊的一个,它可以通过组合的方式表达任何其它的门部件。这被称为与非门的普适性(gate universality)。
    既然感知器能够通过设置恰当的权重和偏置参数,来表达一个与非门,那么理论上它也就能表达任意其它的门部件。
    因此,感知器也能够像前面三体中的例子一样,通过彼此连接从而组成一个计算机系统。
    但这似乎没有什么值得惊喜的,我们已经有现成的计算机了,这只不过是让事情复杂化了而已。
    单个感知器能做的事情很有限。要做复杂的决策,所以则是需要将多个感知器连接起来。
    而实际中的网络可能会有上万个,甚至数十万个参数,如果手工一个一个地去配置这些参数,恐怕这项任务永远也完成不了了。
    而神经网络最有特色的地方就在于这里。
    我们不是为网络指定所有参数,而是提供训练数据,让网络自己在训练中去学习,在学习过程中为所有参数找到最恰当的值。
    大体的运转思路是这样:我们告诉网络当输入是某个值的时候,我们期望的输出是什么,这样的每一份训练数据,称为训练样本(training example)。
    这个过程相当于老师在教学生某个抽象的知识的时候,举一个具体例子:
    一般来说,我们举的例子越多,就越能表达那个抽象的知识。这在神经网络的训练中同样成立。
    我们可以向网络灌入成千上万个训练样本,然后网络就自动从这些样本中总结出那份隐藏在背后的抽象的知识。
    这份知识的体现,就在于网络的所有权重和偏置参数的取值。
    假设各个参数有一个初始值,当我们输入一个训练样本的时候,它会根据当前参数值计算出唯一的一个实际输出值。
    这个值可能跟我们期望的输出值不一样。想象一下,这时候,我们可以试着调整某些参数的值,让实际输出值和期望输出值尽量接近。
    当所有的训练样本输入完毕之后,网络参数也调整到了最佳值,这时每一次的实际输出值和期望输出值已经无限接近,这样训练过程就结束了。
    假设在训练过程中,网络已经对数万个样本能够给出正确(或接近正确)的反应了,那么再给它输入一个它没见过的数据,它也应该有很大概率给出我们预期的决策。这就是一个神经网络工作的原理。
    但这里还有一个问题,在训练过程中,当实际输出值和期望输出值产生差异的时候,要如何去调整各个参数呢?
    当然,在思考怎么做之前,也应该先弄清楚:通过调整参数的方式获得期望的输出,这个方法行得通吗?
    实际上,对于感知器网络来说,这个方法基本不可行。
    比如在上图有39个参数的感知器网络中,如果维持输入不变,我们改变某个参数的值,那么最终的输出基本完全不可预测。
    它或者从0变到1(或从1变到0),当然也可能维持不变。这个问题的关键在于:输入和输出都是二进制的,只能是0或者1。
    如果把整个网络看成一个函数(有输入,有输出),那么这个函数不是连续的。
    因此,为了让训练成为可能,我们需要一个输入和输出能够在实数上保持连续的神经网络。于是,这就出现了sigmoid神经元。
    sigmoid神经元(sigmoid neuron)是现代神经网络经常使用的基本结构(当然不是唯一的结构)。它与感知器的结构类似,但有两个重要的区别。
    第一,它的输入不再限制为0和1,而可以是任意0~1之间的实数。
    第二,它的输出也不再限制为0和1,而是将各个输入的加权求和再加上偏置参数,经过一个称为sigmoid函数的计算作为输出。
    具体来说,假设z=w1x1+w2x2+w3x3+...+b,那么输出output=σ(z),其中:σ(z)= 1/(1+ez)。
    σ(z)是一个平滑、连续的函数。而且,它的输出也是0~1之间的实数,这个输出值可以直接作为下一层神经元的输入,保持在0~1之间。
    可以想象,在采用sigmoid神经元组装神经网络之后,网络的输入和输出都变为连续的了,也就是说,当我们对某个参数的值进行微小的改变的时候,它的输出也只是产生微小的改变。这样就使得逐步调整参数值的训练成为可能。
    在历史上,很多研究人员曾经也做过尝试,michael nielsen的书《neural networks and deep learning》这本书中也曾经提到过这个例子。
    这个神经网络只有一层隐藏层,属于浅层的神经网络(shallow neural networks)。而真正的深度神经网络(deep nerual networks),则会有多层隐藏层。
    神经元系统采用了左右脑半球的设计方式进行设计和制造。
    最右侧则是输出层(output layer),有10个神经元节点,分别代表识别结果是0,1,2,...,9。当然,受sigmoid函数σ(z)的限制,每个输出也肯定是0~1之间的数。
    那我们在得到一组输出值之后,哪个输出的值最大,最终的识别结果就是它。
    而在训练的时候,输出的形式则是:正确的那个数字输出为1,其它输出为0,隐藏层和输出层之间也是全连接。
    而神经网络共的权重参数有784*15+15*10=11910个,偏置参数有15+10=25个,总共参数个数为:11910+25=11935个。
    这是一个非常惊人的数字。
上一页        返回目录        下一页

温馨提示:按 回车[Enter]键 返回书目,按 ←键 返回上一页,按 →键 进入下一页。